Is your Data AI Ready?

Data is the most critical ingredient in realizing the full potential of AI

[countup suffix=”%”]84[/countup]

84% of Executives believe AI will be a competitive advantage
(Source: MIT-BCG survey)

[countup suffix=”%”]79[/countup]

79% of Executives say their data is not ready for AI/Fast Analysis
(Source: MIT-TI Global Report)

In 10 years, 4 out of 5 decisions will be machine assisted. Today, humans are making decisions on only 1% of the available data because of the complexity of retrieving and analyzing data from all of the distributed sources and types. With the data to decision cycles getting shorter and with increasing volumes and variety of data to contend with, the need for real-time retrievability of data to power decisions has never been so critical.

What data does AI need to be successful? It’s often very different than the data that’s been collected for human use cases. AI thrives when trained with high-fidelity data, which is too often thrown out or summarized. To unlock the full potential of AI, we need to make data, the most critical ingredient in the equation, AI ready.

Assess your Data Readiness for AI with these five questions:

Is all your Data accessible for AI/ML algorithms?
  • Enterprise Data is fragmented across multiple systems, structures and locations. Is all of this data available for use with models and algorithms, for business analysts, data scientists and application developers?
  • Do you have a strategy for data preparation and pre-processing for machine learning?
Is your Data Density optimal for fast Data to Decision Cycles?

Data density is the rate of collection vs. the rate of data decay. If the business need is to make decisions with real-time changing patterns in data, you need to have the right infrastructure in place to feed queries, analytics and ML models with this ever changing data.
a. Do you have a streaming data pipeline infrastructure in production to support real-time decisions?
b. Do you have capabilities where you merge real-time streams with batch processing infrastructure to pipeline data to ML models and applications?

Is your data securely portable to make decisions where it needs to be made?
  • Do you have to move your data to where the application/ML model is, to do predictions?
  • Do you have a model training pipeline to retrain models running in production without having to move your data back and forth?
Do you have a Data Integration strategy to power AI/ML workloads?
  • Do you have an integration strategy across your batch, streaming, data lakes and Data Warehouses to power ML based decisions?
  • Do you have a data model that allows efficient interconnection between various data sources to provide a comprehensive view of the data at an Enterprise level.
Is your organization ready to break down the barriers between the data consumers (business units) and IT/Data Engineering?
  • Is your IT data access request cycle long for large, complex datasets?
  • Do you have a secure self-service model for business users to gain access to datasets?